a2 United States Patent

US009240927B2

(10) Patent No.: US 9,240,927 B2

Das et al. (45) Date of Patent: Jan. 19, 2016
(54) METHODS AND APPARATUS FOR (56) References Cited
ENHANCED OVERLAY STATE
MAINTENANCE U.S. PATENT DOCUMENTS
. . 6,480,473 B1* 11/2002 Chambers etal. 370/253
(75) Inventors: (SS‘S‘;‘“:;Z M;ha“ Das, Saél JC’]S)‘?’ CA cA 6,490,244 B1* 12/2002 Pegrumetal.c.......... 370/216
; Vidya Narayanan, San Diego, .
(US); Lakshminath Reddy Dondeti, (Continued)
Hyderabad (IN); Ranjith S. Jayaram,
Bridgewater, NJ (US) FOREIGN PATENT DOCUMENTS
CN 101073220 A 11/2007
(73) Assignee: QUALCOMM Incorporated, San CN 101261635 A 9/2008
Diego, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35]] o
U.S.C. 154(b) by 997 days. Massoulie, Laurent, et al. “Peer Counting and Sampling in Overlay
Networks: Random Walk Methods,” Jul. 22, 2006, PODC *06, ACM,
(21) Appl. No.: 12/712,983 pp. 123-132.%
(Continued)
(22) Filed: Feb. 25, 2010
. L Primary Examiner — Douglas Blair
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Paul Kuo
US 2011/0004681 A1l Jan. 6, 2011
57 ABSTRACT
Related U.S. Application Data Methods and apparatus for enlhanced ovelz(rlaX sftierlte mairﬁte(i
o o nance in a peer-to-peer overlay network. st metho
(60) Provisional aPPI.IC.aUOH No. §1/ 1.55,868, filed on Feb. includes inferring that a first node is leaving the overlay
26, 2009, provisional application No. 61/185,535, network, and transmitting a decrement message to decrement
filed on Jun. 9, 2009. a size counter value. A second method includes identifying a
set of nodes associated with a first node of an overlay net-
(1) Int. Cl. work, obtaining a segment length associated with each node
GO6l" 15/16 (2006.01) of the set of nodes, and determining a size of the overlay
HO4L 12/24 (2006.01) network by dividing the total number of nodes in the set of
Ho4L 29/08 (2006.01) nodes by the sum of the segment lengths. A third method
(52) US.CL includes identifying a set of nodes associated with a firstnode
CPC .o HO4L 41/12 (2013.01); HO4L 67/104 of an overlay network, obtaining a size estimate associated
(2013.01); HO4L 67/1044 (2013.01) with the first node and with each node of the set of nodes, and
(58) Field of Classification Search determining a size of the overlay network by averaging the

CPC ..o HO4L 45/02; HO4L 45/028
USPC ittt 709/222, 224
See application file for complete search history.

500

™

size estimates.

23 Claims, 8 Drawing Sheets

- 502

Determine location of overlay size

counter

506

510 ~
Send message
1o decrement
overlay size YES
counter

14~
Send message
to decrement
overlay size [yEg
counter

[

Send message o
to increment Detect node
overlay size [yES joining?
counter

NO

[

W

Detect node 08
leaving?

Infer node 512

leaving?

WY

516

Query overlay size counter to determine
size of overlay network

US 9,240,927 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,677,858 Bl 1/2004 Faris et al.
8,094,585 B2* 1/2012 Liangetal. 370/256
8,549,175 B2* 10/2013 Krishna 709/239
2004/0054807 Al* 3/2004 Harveyetal. 709/243
2004/0081166 Al 4/2004 Stanforth et al.
2004/0203435 Al 10/2004 Karlquist et al.
2005/0060429 Al* 3/2005 Massoulieetal. 709/243
2005/0223102 Al 10/2005 Zhang et al.
2006/0251062 Al* 11/2006 Jainetal. 370/389
2007/0204061 Al 8/2007 Chen et al.
2007/0230482 Al 10/2007 Shim et al.
2007/0237089 Al 10/2007 Chen et al.
2008/0288654 Al* 11/2008 Matuszewskietal. 709/238
2009/0063675 Al* 3/2009 Farisetal. ... 709/224
2011/0055365 Al 3/2011 Krishna
2012/0185899 Al* 7/2012 Riedletal. ... 725/35

FOREIGN PATENT DOCUMENTS

CN 101378325 A
JP 2005323346 A
™ 1269169 B
WO WO003098814

WO 2006063275 Al

OTHER PUBLICATIONS

3/2009
11/2005
12/2006
11/2003

6/2006

<

16th Mobile and Wireless Communication Summit—
Routing”, 2007, p. 629-634.

International Search Report and Written Opinion—PCT/US2010/
038040, International Search Authority—FEuropean Patent Office—
Sep. 29, 2010.

Kunzmann G., et al., “Analyzing and Modifying Chord’s Stabiliza-
tion Algorithm to Handle High Churn Rates” IEEE Explore 2005, pp.
885-890, XP002601159.

Maenpaa G Camarillo J Hautakorpi Ericsson J: “A Self-tuning Dis-
tributed Hash Table (DHT) for Resource Location and Discovery
(RELOAD), draft-maenpaa-p2psip-self-tuning-00.txt” a Self-Tun-
ing Distributed Hash Table (DHT) for Resource Location and Dis-
covery (RELOAD); draft-maenpaa-p2psip-self-tuning-00.txt,
Internet Engineering Task Force, IETF; Standard Working Draft,
Internet Society (ISOC) 4, Rue Des Falaises CH-1205 Geneva, Feb.
16, 2009, XP015061541.

MaenpaaJ, et al., “Study on maintenance operations in a chord-based
Peer-to-Peer session initiation protocol overlay network” Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on, IEEE, Piscataway, NJ, USA, May 23, 2009, pp. 1-9,
XP031487394.

Rossi D, et al., “Gambling heuristic on a chord ring” Global Tele-
communications Conference, 2005. Globecom *05. IEEE St. Louis,

‘Field Division

MO, USA, Nov. 28-Dec. 2,2005, Piscataway, NJ, USA, IEEE LNKD
DOI: 10.1109/GLOCOM.2005.1577763, vol. 2, Nov. 28, 2005, pp.
873-878, XP010879590.

USENIX Annual Technical Conference—*Structured and Unstruc-
tured Overlays Under the Microscope”, 2006, p. 341-355.

Chen W, et al., “Dynamic Local Peer Group Organizations for
Vehicle Communications,” Mobile and Ubiquitous Systems—Work-
shops, 2006. 3rd Annual International Conference on, IEEE, PI, Jul.
1, 2006, pp. 1-8, XP031089403 ISBN: 978-0/7803-9791-0 p. 3,
right-hand column, line 6-line 52.

European Search Report—EP12194847—Search Authority—Ber-
lin—Jan. 29, 2013.

European Search Report—EP12194853—Search Authority—Ber-
lin—Jan. 29, 2013.

Ganesh A, et al., “Peer Counting and Sampling in Overlay Networks
Based on Random Walks,” Distributed Computing, Springer, Berlin,
DE LNKD-DOI: 10.1007/S00446-007-0027-Z, vol. 20, No. 4, Jun.
5, 2007, pp. 267-278, XP019564156 ISSN : 1432-0452 *abstract
paragraph [001]-paragraph [02.2].

Ghinita G, et al., “An Adaptive Stabilization Framework for Distrib-
uted Hash Tables,” Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International Rhodes Island, Greece Apr.
25-29, 2006, Piscataway, NJ, USA,IEEE LNKDDOI1 : 10.1109/
IPDPS. 2006.1639269, Apr. 25, 2006, pp. 1-10, XP010920239
ISBN: 978-1-4244-0054-6 p. 3, left-hand column, line 3-line 17 p. 6,
left-hand column, line 29-line 36.

International Search Report and Written Opinion—PCT/US2010/
025665—ISA/EPO—Sep. 6, 2010.

Kunzmann, G., “Increasing the reliability of structured P2P net-
works”, Design of Reliable Communication Networks, 2005 (DRCN
2005), Proceedings Sth International Workshop on, IEEE, Oct.
10-19, 2005.

Luo X., et al,, “DHT-assisted probabilistic exhaustive search in
unstructured P2P networks”, Parallel and Distributed Processing,
2008 IPDPS 2008, IEEE International Symposium on IEEE, Apr.
14-18, 2008, pp. 1-9.

Merrer E.L., et al., “Peer to Peer Size Estimation in Large and
Dynamic Networks: A Comparative Study,” 2006 15th IEEE Inter-
national Conference on High Performance Distrbuted Computing
Paris, France Jun. 19-23, 2006, Piscataway, NJ, USA, IEEE, Jun. 19,
2006, pp. 7-17, XP010926036 ISBN: 978-1-4244-0307-3 * abstract
p. 8, left-hand column, line 5-line 15 paragraph [_IL].

Stoica I, et al., “MIT-LCS-TR-819—Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications” Internet Citation Mar. 23,
2001, XP002328538 Retrieved from the Internet: URL :http://www.
les.mi teduwpubli cati ons/pu bs/ps/MIT-LCS-TR-819.ps>
[retrieved on May 17, 2005] paragraph [04.4]-paragraph [4.4.1].
Zhu Y., et al., “Ferry: An architecture for content-based publish/
subscribe services on P2P networks”, Parallel Processing, 2005,
ICPP 2005, International Conference on IEEE, Jun. 17, 2005.
Taiwan Search Report—TW099105711—TIPO—May 30, 2013.

* cited by examiner

U.S. Patent Jan. 19, 2016 Sheet 1 of 8 US 9,240,927 B2

100

Apparatus

FIG. 1

U.S. Patent

200

212—\

Jan. 19, 2016 Sheet 2 of 8 US 9,240,927 B2
Memory ~204
Stabilization
2184 .
Algorithm
144 OL Network 510
Parameters
164 Finger
Database
/202
7 206 Processor
Timer
/208
» Transceiver

FIG. 2

U.S. Patent

300

second criteria

FIG. 3

Jan. 19, 2016 Sheet 3 of 8 US 9,240,927 B2
AN
/’302
Maintain database of overlay
network parameters
¢ /~304
Execute finger stabilization algorithm
¢ /r306
Store finger determination results
¢ /r308
Initialize current time interval
¢ /,310
P Measure current time interval ——
¢ /,3]2
Execute finger stabilization algorithm
¢ /,314
Store finger determination results
318 , 116
I Finger
_ncredse differences meet
time interval first criteria
320 322
Finger -
NO differences meet YES Decrease

time interval

U.S. Patent Jan. 19, 2016 Sheet 4 of 8 US 9,240,927 B2

400

f402

Means for comparing first and
second finger determinations
associated with a node

/406

Means for decreasing the time
404 interval between executions of
the finger stabilization algorithm
if the differences between the first
and second finger determinations
satisfy a second criteria

Means for increasing a time
interval between executions of a
finger stabilization algorithm if
differences between the first and

second finger determinations

satisfy a first criteria

FIG. 4

U.S. Patent Jan. 19, 2016 Sheet 5 of 8 US 9,240,927 B2

500

) 502

Determine location of overlay size
counter

506 ~

Send message
to increment
overlay size

counter

Detect node S04

joining?

510 ~

Send message
to decrement
overlay size
counter

Detect node 508

leaving?

514 ~N

Send message
to decrement
overlay size
counter

Infer node >12

leaving?

Vs 516
Query overlay size counter to determine
size of overlay network

FIG. 5

U.S. Patent

600

700

Jan. 19, 2016 Sheet 6 of 8

US 9,240,927 B2

Ve 602

Identify set of nodes

!

604

the set of nodes

Obtain segment lengths associated with

Y

Ve 606

Determine overlay size based on the
number of nodes and associated
segment lengths

FIG. 6

f 702

Determine size estimate at a first node

Obtain size estimates from fingers,
neighbors and/or other nodes

Determine overlay size based on the
size estimates

FIG. 7

l / 704

{ 706

U.S. Patent Jan. 19, 2016 Sheet 7 of 8 US 9,240,927 B2

=N
. 802

Determine size estimate at a first node

l Ve 804

Obtain size estimates from any node in
communication with the first node

* Ve 806

Determine overlay size based on the
size estimates

FIG. 8

900

W

904

Means for transmitting a
decrement message to
decrement a size counter value

/s 902

Means for inferring that a first
node is leaving the overlay
network

FIG.9

U.S. Patent

Jan. 19, 2016

1000

/’1002

Means for identifying a set of

Sheet 8 of 8

nodes associated with a first
node of an overlay network

/11004

Means for obtaining a segment

/’1006

length associated with each node
of the set of nodes

1100

/,1102

Means for identifying a set of

Means for determining a size of
the overlay network by dividing
the total number of the nodes in
the set of nodes by the sum of
the segment lengths

FIG. 10

nodes associated with a first
node of an overlay network

/’1104

Means for obtaining a size
estimate associated with the first

/11106

Means for determining the size

node and with each node of the
set of nodes

FIG. 11

of the overlay network by
averaging the size estimates

US 9,240,927 B2

US 9,240,927 B2

1
METHODS AND APPARATUS FOR
ENHANCED OVERLAY STATE
MAINTENANCE

CLAIM OF PRIORITY UNDER 35 U.S.C. §119

The present application for patent claims priority to Provi-
sional Application No. 61/155,868 entitled “Methods and
Apparatus for Size Estimation of Peer-to-Peer Overlay Net-
works” filed Feb. 26, 2009, and to Provisional Application
No. 61/185,535 entitled “Methods and Apparatus for an
Adaptive Self Tunable Approach for Overlay Routing Stabi-
lization and Size Estimation,” filed Jun. 9, 2009, both
assigned to the assignee hereof and hereby expressly incor-
porated by reference herein.

RELATED APPLICATION

The present application for patent is related to application
Ser. No. 12/712,305, entitled “Methods and Apparatus for
Adaptively Scheduling a Finger Stabilization Algorithm,”
filed Feb. 25, 2010, and assigned to the assignee hereof.

BACKGROUND

1. Field

The present application relates generally to the operation
of overlay networks, and more particularly, to methods and
apparatus for enhanced overlay state maintenance in a peer-
to-peer overlay network.

2. Background

A network in which member nodes obtain services in the
absence of server-based infrastructure is referred to as a
“peer-to-peer” overlay network. In a peer-to-peer overlay,
peer nodes co-operate with each other to provide services and
to maintain the network. Peer-to-peer overlay networks can
be built on top of an underlying network, such as a network
utilizing the Internet Protocol (IP).

In a peer-to-peer overlay network, each node has knowl-
edge of one or more peers participating in the overlay. A
simple but inefficient approach to routing data on the overlay
network from a source node to a destination node is to con-
tinually pass the data to the next hop or successor node (i.e.,
node logically next to the source node in the identity space)
until the destination node is reached. However this approach
incurs excessive latency as the size of the overlay network and
number of hops increases. Therefore, for routing optimiza-
tion, each node maintains a list of fingers that are one node,
two nodes, four nodes, or up to 20"V nodes away from itself;
where m is the number of bits assigned to each node identifier.
This helps in minimizing the number of hops needed to route
data from node O(n) to node O(log(n)) where n is the number
of nodes for the average case.

However, nodes may come and go at any time and result in
changes in the overlay network configuration that affects the
fingers known to a particular node. To compensate for this
variability, each node re-runs a finger stabilization algorithm
that re-computes the fingers known to that node. The results
of the finger stabilization algorithm are stored in a finger
table. Unfortunately, since each node maintains it own finger
table, determining the frequency at which each node needs to
run its finger stabilization algorithm may be problematic. For
example, if a node does not run its finger stabilization algo-
rithm often enough, its finger table may become stale result-
ing in inefficient and delayed packet routing. If a node runs its
finger stabilization algorithm too often, this may result in
wasting overlay bandwidth and/or placing a burden on other

10

15

20

25

30

35

40

45

50

55

60

65

2

nodes on the overlay network. For example, running the sta-
bilization algorithm requires power, and excessive execution
of the stabilization algorithm may waste power at battery
operated nodes.

Furthermore, since structured peer-to-peer overlay net-
works are highly distributed in nature, participating nodes do
not have complete routing tables and hence do not know the
size of the overlay network they are operating in. However,
knowledge of the size of the overlay network can be useful for
several purposes, such as when merging overlays, performing
load balancing or caching strategies, as well as routing pro-
tocol specialization.

Unfortunately, conventional systems may fail to provide an
accurate overlay network size. For example, nodes may leave
the overlay without gracefully notifying their neighbors, and
as a result, the size of the overlay network may not be accu-
rately maintained.

Therefore, it would be desirable to have a simple cost
effective mechanism that operates to allow a node to adap-
tively schedule a finger stabilization algorithm and to deter-
mine the size of an overlay network to overcome the problems
described above.

SUMMARY

In one or more aspects, an adaptive scheduling (AS) sys-
tem, comprising methods and apparatus, is provided that
operates adaptively to allow a node to determine a time inter-
val between executions of a finger stabilization algorithm and
thereby adaptively schedule execution of the algorithm. The
system also operates to allow nodes to determine the size of
the overlay network on which they are participating thereby
facilitating network functions such as merging, load balanc-
ing and caching.

In an aspect, a method is provided for determining a size of
apeer-to-peer overlay network. The method comprises infer-
ring that a first node is leaving the overlay network, and
transmitting a decrement message to decrement a size counter
value.

Inanaspect, an apparatus is provided for determining a size
of'a peer-to-peer overlay network. The apparatus comprises a
processor configured to infer that a first node is leaving the
overlay network, and a transmitter coupled to the processor
and configured to transmit a decrement message to decrement
a size counter value.

In an aspect, a method is provided for determining a size of
a peer-to-peer overlay network. The method comprises iden-
tifying a set of nodes associated with a first node of an overlay
network, obtaining a segment length associate with each node
of the set of nodes, and determining a size of the overlay
network by dividing a total number of the nodes in the set of
nodes by a sum of the segment lengths.

Inanaspect, an apparatus is provided for determining a size
of'a peer-to-peer overlay network. The apparatus comprises a
processor configured to identify a set of nodes associated with
afirstnode of an overlay network, a transceiver coupled to the
processor and configured to obtain a segment length associate
with each node of the set of nodes, and where the processor
configured to determine a size of the overlay network by
dividing the total number of the nodes in the set of nodes by
a sum of the segment lengths.

In an aspect, a method is provided for determining a size of
a peer-to-peer overlay network. The method comprises iden-
tifying a set of nodes associated with a first node of an overlay
network, obtaining a size estimate associated with the first
node and with each node of the set of nodes, and determining
a size of the overlay network by averaging the size estimates.

US 9,240,927 B2

3

Inanaspect, an apparatus is provided for determining a size
of'a peer-to-peer overlay network. The apparatus comprises a
processor configured to identify a set of nodes associated with
a first node of an overlay network, and to obtain a size esti-
mate associated with the first node, a transceiver coupled to
the processor and configured to obtain a size estimate asso-
ciated with each node of the set of nodes, and where the
processor is configured to determine a size of the overlay
network by averaging the size estimates.

Other aspects will become apparent after review of the
hereinafter set forth Brief Description of the Drawings,
Description, and the Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects described herein will become more
readily apparent by reference to the following Description
when taken in conjunction with the accompanying drawings
wherein:

FIG. 1 shows a network that illustrates the operation of the
AS system;

FIG. 2 shows an exemplary AS apparatus constructed in
accordance with the AS system;

FIG. 3 shows an exemplary method for adaptively sched-
uling a finger stabilization algorithm in accordance with the
AS system;

FIG. 4 shows an exemplary AS apparatus constructed in
accordance with the AS system;

FIG. 5 shows a first method for determining overlay net-
work size in accordance with the AS system;

FIG. 6 shows a second method for determining overlay
network size in accordance with the AS system;

FIG. 7 shows a first refinement method for determining
overlay network size in accordance with the AS system;

FIG. 8 shows a second refinement method for determining
overlay network size in accordance with the AS system;

FIG. 9 shows an exemplary AS apparatus constructed in
accordance with the AS system;

FIG. 10 shows an exemplary AS apparatus constructed in
accordance with the AS system; and

FIG. 11 shows an exemplary AS apparatus constructed in
accordance with the AS system.

DESCRIPTION

The following description describes aspects and imple-
mentations of an AS system for adaptively scheduling execu-
tion of a finger stabilization algorithm and for determining a
size of an overlay network.

FIG. 1 shows a network 100 that illustrates the operation of
an AS system. The network 100 includes an underlying net-
work 102 which comprises any type of network, such as an
Internet Protocol network. Although the underlying network
102 is shown as a single entity, the underlying network may
comprise any number or types of networks such as WANSs,
L AN, wireless networks and/or any other type of network.

A peer-to-peer overlay network 104 comprises a subset of
the nodes of the underlying network 102 and operates utiliz-
ing the services of the underlying network 102 to allow those
nodes to communicate. In the peer-to-peer overlay network
104, the nodes are connected by communication links 106 to
form a circular routing path. The communication links 106
may be secure tunnels provided by the underlying network
102. The peer-to-peer overlay network 104 operates with a set
of permissions and interactions that are distinct from under-
lying network 102. It should also be noted that the peer-to-

10

15

20

40

45

50

55

4

peer overlay network 104 may have any topology or archi-
tecture to enable any routing pattern and it is not limited to the
routing shown in FIG. 1.

Each of the nodes in the peer-to-peer overlay network 104
establishes a node identifier. For simplicity and ease of
description, the node identifiers for the nodes of the peer-to-
peer overlay network 104 are (1, 4, 7, 10, 13, 16, 19, and 22).
It should be noted that in practice, the overlay network may
comprise a very large number of nodes and utilize larger node
identifiers. During operation, traffic can flow around the peer-
to-peer overlay network 104 in either direction.

To facilitate traffic routing, each node of the overlay net-
work 104 computes and maintains a finger table that identifies
routing fingers that cut across the overlay network 104. For
example, each node runs a finger stabilization algorithm to
identify the routing fingers based on the overlay network’s
current configuration. Thus, as nodes join and leave the over-
lay network, the finger stabilization algorithm will identify
the routing fingers associated with each node. For example,
the finger stabilization algorithm running at node 4 has iden-
tified finger 108 to node 13 and finger 110 to node 19. The use
of the fingers provides more efficient packet routing across
the overlay network 104. For example, a packet atnode 4 to be
routed to node 16 can be routed along finger 108 in a first hop,
and then routed to node 16 in a second hop as illustrated by
routing path 114.

An AS apparatus is provided at each of the nodes of the
overlay network 104. For simplicity, the AS apparatus 112 is
shown at node 4 of the overlay network 104; however, a
similar AS apparatus may be located at each node of the
overlay network 104. The AS apparatus 112 operates to adap-
tively schedule executions of a finger stabilization algorithm
performed at node 4. The AS apparatus 112 is suitable for use
with any type of finger stabilization algorithm and the follow-
ing provides a brief description of its operation.

The AS apparatus 112 starts with an initial or base time
interval (i.e., t seconds) between executions of the finger
stabilization algorithm. When the stabilization algorithm is
run, node 4 may discover N fingers. The AS apparatus 112
measures a time interval for t seconds and triggers node 4 to
execute the finger stabilization algorithm again. If the differ-
ences between two finger results (i.e., number and/or types of
fingers determined) meets a first criteria, then the AS appa-
ratus 112 operates to increase the time interval between
executions of the finger stabilization algorithm. For example,
in one implementation, the time interval is increase by a factor
of 2. However, if the differences meet second criteria, then the
AS apparatus 112 operates to decrease the time interval
between executions of the finger stabilization algorithm. For
example, in one implementation the time interval is decreased
by a factor of 2. The first and second criteria can be defined to
meet any suitable performance goals. For example, the first
criteria may be met if there are no differences between the two
finger results. The second criteria may be met if there are any
differences found between the two finger results. Thus, it is
also possible to define the first and second criteria to test any
set of conditions with respect to changes in the finger table of
a particular node.

Therefore, through this adaptive self-tunable approach, the
AS apparatus 112 allows each node to arrive independently
and adaptively at a steady state interval between executions of
the finger stabilization algorithm. Furthermore, the system
allows each node to approximate independently the size of the
overlay. For example, if a particular node has identified N
fingers in the overlay network at time t, then there are at most
2" nodes in the overlay network at that time. Thus, if a par-
ticular node has identified three unique fingers, then that node

US 9,240,927 B2

5

approximates the size of the overlay network to be 8 (2°)
nodes. However, this approximation will vary with time and
serves to provide a node with an approximate size range of the
overlay network.

The AS system requires no coordination among nodes or
global knowledge of the system to schedule the finger stabi-
lization algorithm, which is valuable for peer-to-peer distrib-
uted applications. A more detailed description of the opera-
tion of the AS apparatus 112 is provided below.

FIG. 2 shows an exemplary AS apparatus 200 constructed
in accordance with the AS system. For example, the AS
apparatus 200 is suitable for use as the AS apparatus 112
shown in FIG. 1. The AS apparatus 200 comprises processor
202, memory 204, timer 206, and transceiver 208 all coupled
to communicate using data bus 210. It should be noted that the
AS apparatus 200 is just one implementation and that other
implementations are possible.

The transceiver 208 comprises hardware and/or hardware
executing software that operate to allow the AS apparatus 200
to communicate data or other information with a plurality of
nodes on a peer-to-peer overlay network. The transceiver 210
is operable to establish one or more communication links 212
with nodes of the peer-to-peer overlay network for the pur-
pose of performing a finger stabilization algorithm or net-
work size estimation. For example, the communication links
212 may be secure tunnels that are formed utilizing the ser-
vices of an underlying IP network.

The memory 204 comprises any suitable storage device
operable to allow the storage and retrieval of information
during operation of the AS system. The memory 204 operates
to store overlay network parameters 114 that comprise infor-
mation about an overlay network including node identifiers,
underlying network identifiers, service identifiers and any
other parameters or information related to the operation or
use of an overlay network. The overlay network parameters
114 also comprise first and second sets of criteria that are used
during operation of the AS system. For example, the sets of
criteria are stored in the memory 204 by the processor 202.
The processor 202 is also operable to update, change, or other
modify the sets of criteria. The sets of criteria are used during
operation of the AS system to determine when to increase or
decrease a time interval between executions of a finger stabi-
lization algorithm 218.

The memory 204 also operates to store finger database 216
comprising finger information associated with one or more
nodes of a peer-to-peer overlay network. The finger database
216 is used to store information about the number and types of
fingers available to a node. For example, the finger database
216 comprises information such as the number of fingers,
types of fingers, finger end nodes, and any other information
related to fingers of an overlay network. The information in
the finger database 216 is determined from the execution of a
finger stabilization algorithm 218 by the processor 202.

The timer 206 comprises hardware and/or hardware
executing software that operates to measure a time interval
based on time parameters received from the processor 202.
For example, the time parameters include a count down value
that is used to initialize a counter. The count down value
corresponds to a particular time interval to be measured by the
timer 206. Thus, the processor 202 may set the timer 206 to
measure any desirable time interval. When the time interval
has been measured, the timer 206 indicates timer expiration to
the processor 202. For example, the timer 206 measures a
particular time interval, at the end of which, the processor 202
is notified and thereafter operates to execute the finger stabi-

10

15

20

25

30

35

40

45

50

55

60

65

6

lization algorithm 218. The finger stabilization algorithm 218
operates to determine information about fingers associated
with a particular node.

The processor 202 comprises at least one of a CPU, pro-
cessor, gate array, hardware logic, memory elements, and/or
hardware executing software. The processor 202 operates to
determine fingers available to a particular node in an overlay
network. For example, the processor 202 executes the finger
stabilization algorithm 218 and stores information about the
determined fingers in the finger database 216. The processor
202 also operates to compare finger determinations deter-
mined by the finger stabilization algorithm to determine
whether to increase or decrease a time interval before the
finger stabilization algorithm is performed. The processor
202 controls the timer 206 to measure this time interval. The
processor 202 also operates to perform one or more methods
for overlay size estimation.

Adaptive Time Interval Determination

During operation of the AS system, the timer 206 operates
to measure time intervals, after which, the processor 202
executes the finger stabilization algorithm 218. For example,
the timer 206 signals the processor 202 that a time interval has
ended or expired. The processor 202 operates to utilize the
overlay network parameters 214 to determine information
used to execute the finger stabilization algorithm 218. The
resulting finger determination is stored in the finger database
216.

The processor 202 then determines the time interval to be
measured before the next execution of the finger stabilization
algorithm. The processor 202 determines the next time inter-
val by comparing two finger results of the finger stabilization
algorithm. For example, the processor 202 may compare the
two most recent finger determinations, or may compare aver-
aged finger results, or may select any particular finger results
to compare. If the difference between the two finger results
meet a first set of criteria (i.e., same number, types, end nodes,
etc.) then the processor 202 increases the time parameters to
correspondingly increase the time interval (T1). For example,
in one implementation the time interval is increased as fol-
lows up to a selected maximum 11, , , which guarantees that
the algorithm is performed at a minimum frequency of
UTL,, .

I1, 0, =T1,15%2

If the difference between the two finger results meet a
second set of criteria, then the processor 202 decreases the
time parameters to correspondingly decrease the time interval
(TI). For example, in one implementation the time interval is
decreased as follows down to a selected minimum 11T, ,
which guarantees that the algorithm is performed at a maxi-
mum frequency of 1/TL,,,,.

L, =T1,.42

Once the new time parameters are determined, the proces-
sor 202 provides the time parameters to the timer 206 to allow
the new time interval to be measured. At the end of the time
interval, the processor 202 executes the finger stabilization
algorithm again. It should be noted that the techniques for
increasing and decreasing the time interval provided above
are just one implementation and that other techniques may be
used. For example, the time interval may be increased and/or
decreased at a faster or slower rate than described above.
Virtually any technique for increase and/or decreasing the
time interval may be used.

It should also be noted that the processor 202 may generate
any set of parameters to define the first and second set of
criteria to obtain selected performance of the AS system. For

US 9,240,927 B2

7

example, the first set of criteria may be defined such that these
criteria are met if there are no differences or only small
differences between the two finger determinations. Further-
more, the second set of criteria may be defined such that these
criteria are met if there are any differences or only a large
number of differences between the two finger determinations.
Thus, the sets of criteria can be set by the processor 202 to
detect virtually any finger dynamic (i.e., no change, small
change, large change, particular change, etc.) and adjust the
time interval between executions of the finger stabilization
algorithm based on the detected finger dynamics.

In one implementation, the AS system comprises a com-
puter program product having one or more program instruc-
tions (“instructions™) or sets of “codes” stored or embodied
on a computer-readable medium. When the codes are
executed by at least one processor, for instance, processor
202, their execution causes the AS apparatus 200 to provide
the functions ofthe AS system described herein. For example,
the computer-readable medium comprises a floppy disk,
CDROM, memory card, FLASH memory device, RAM,
ROM, or any other type of memory device or computer-
readable medium that interfaces to the AS apparatus 200. In
another aspect, the sets of codes may be downloaded into the
AS apparatus 200 from an external device or communication
network resource. The sets of codes, when executed, operate
to provide aspects of an AS system as described herein.

FIG. 3 shows an exemplary method 300 for adaptively
scheduling a finger stabilization algorithm in accordance with
the AS system. For clarity, the method 300 is described below
with reference to the AS apparatus 200 shown in FIG. 2. In
one implementation, the processor 202 executes one or more
sets of codes to control the AS apparatus 200 to perform the
functions described below.

Atblock 302, a database of overlay network parameters is
maintained. In one implementation, the processor 202 main-
tains the parameters database 214 in the memory 204. For
example, the parameters database 214 comprises, but is not
limited to, IP addresses, node identifiers, and/or any other
parameters related to one or more nodes operating on a peer-
to-peer overlay network.

Atblock 304, a finger stabilization algorithm is performed.
In one implementation, the processor 202 executes the stabi-
lization algorithm 218 to communicate with other nodes of an
overlay network using the transceiver 208 and the communi-
cation links 212 to determine fingers of the overlay network.
The processor 202 performs any suitable stabilization algo-
rithm to determine the fingers associated with the overlay
network.

At block 306, the results of the finger stabilization algo-
rithm are stored in memory. For example, the processor 202
stores the results of the finger stabilization algorithm in the
memory 204 as part of the finger database 216.

Atblock 308, a time interval is initialized. For example, the
processor 202 inputs initial time parameters into the timer
206 so that the timer 206 can measure an initial time interval.

Atblock 310, the method waits for the current time interval
to be measured. For example, the timer 206 measures the
current time interval and provides an indication to the pro-
cessor 202 when the time interval has expired.

Atblock 312, a finger stabilization algorithm is performed.
In one implementation, in response to the timer 206 expira-
tion, the processor 202 executes the stabilization algorithm
218 to communicate with other nodes of an overlay network
using the transceiver 208 and the communication links 212 to
determine fingers of the overlay network. The processor 202
performs any suitable stabilization algorithm to determine the
fingers associated with the overlay network.

10

15

20

25

30

35

40

45

50

55

60

65

8

At block 314, the results of the finger stabilization algo-
rithm are stored in memory. For example, the processor 202
stores the results of the finger stabilization algorithm in the
memory 204 as part of the finger database 216.

At block 316, a determination is made as to whether the
differences between two finger determinations met a first set
ofcriteria. For example, the processor 202 retrieves the recent
and previous finger results from the finger database 216 and
compares them to determine if the differences between them
met the first set of criteria. For example, the first set of criteria
may be met if there are no differences or only small differ-
ences between the first and second finger determinations. If
the first set of criteria is met, the method proceeds to block
318. If the first set of criteria is not met, the method proceeds
to block 320.

At block 318, the current time interval is increased. For
example, the processor 202 increases the time interval by a
factor of 2 and inputs the new time parameters into the timer
206 so that the timer 206 can measure the updated time
interval. The method then proceeds to block 310 to wait for
expiration of the timer 206. It should be noted that the pro-
cessor 202 can utilize any suitable technique or algorithm to
increase the time interval.

At block 320, a determination is made as to whether the
differences between two finger determinations met a second
set of criteria. For example, the processor 202 retrieves the
recent and previous finger results from the finger database
216 and compares them to determine if the differences
between them met the second set of criteria. For example, the
second set of criteria may be met if there are any differences
or only large differences between the first and second finger
determinations. If the second set of criteria is met, the method
proceeds to block 322. If the second set of criteria is not met,
the method proceeds to block 310 and does not change the
time interval.

At block 322, the time interval is decreased. For example,
the processor 202 decreases the time interval by a factor of 2
and inputs the new time parameters into the timer 206 so that
the timer 206 can measure the updated time interval. The
method then proceeds to block 310 to wait for expiration of
the timer 206. It should be noted that the processor 202 can
utilize any suitable technique or algorithm to decrease the
current time interval. In one implementation, the time interval
is decreased at a faster rate than it is increased.

Therefore, the method 300 is operable at a node to deter-
mine when fingers associated with an overlay network have
changed and adaptively adjust a time interval between execu-
tions of a finger stabilization algorithm in accordance with the
AS system. It should be noted that the method 300 is just one
implementation and that the operations of the method 300
may be rearranged or otherwise modified within the scope of
the various implementations. Thus, other implementations
are possible.

FIG. 4 shows an exemplary AS apparatus 400 constructed
in accordance with the AS system. For example, the AS
apparatus 400 is suitable for use as the AS apparatus 200
shown in FIG. 2. In an aspect, the AS apparatus 400 is imple-
mented by at least one integrated circuit comprising one or
more modules configured to provide aspects of an AS system
as described herein. For example, in one implementation,
each module comprises hardware and/or hardware executing
software.

The AS apparatus 400 comprises a first module comprising
means (402) for comparing first and second finger determi-
nations associated with a node, which in an aspect comprises
the processor 202. The AS apparatus 400 also comprises a
second module comprising means (404) for increasing a time

US 9,240,927 B2

9

interval between executions of a finger stabilization algo-
rithm if differences between the first and second finger deter-
minations satisty a first criteria, which in an aspect comprises
the timer 206. The AS apparatus 400 also comprises a third
module comprising means (406) for decreasing the time
interval between executions of the finger stabilization algo-
rithm if the differences between the first and second finger
determinations satisfy a second criteria, which in an aspect
comprises the timer 206.

Overlay Size Determination

The AS system also operates to determine overlay network
size estimates. In one implementation, the AS apparatus 200
operates to perform two methods for size estimation of a
peer-to-peer overlay network. In a first method, a centralized
counter is utilized and combined with an inference of node
dynamics to estimate the size of the overlay network. In a
second method, a distributed estimation process is performed
that uses piggybacked communication among peers as well as
one or more heuristics to estimate the size of the overlay
network.

Size Determination—Method One

FIG. 5 shows a first method 500 for determining overlay
network size in accordance with the AS system. The first
method 500 of size determination is based on a distributed
hash table implementation of the overlay network where any
data item has an associated data key. The data key is obtained
by hashing a data key string using a collision-resistant hash
function to a numeric key. Nodes also receive a node identity
in the same keyspace. A data item is stored at the node whose
node key is closest in numeric distance to the data item’s key
(numeric key).

For clarity, the method 500 is described below with refer-
ence to the AS apparatus 200 shown in FIG. 2. In one imple-
mentation, the processor 202 executes one or more sets of
codes to control the AS apparatus 200 to perform the func-
tions described below.

At block 502, an overlay size counter is maintained and
indicates the current size of the overlay network. The overlay
size counter can be accessed by any node participating in the
overlay network. A description of the overlay size counter and
how the overlay size counter is maintained and updated is
provided below.

At block 504, a determination is made as to whether a
joining node is detected. In one implementation, any node
joining the overlay network adds a closest neighbor who is a
successor in the numeric keyspace, i.e., whose node key is
closest in the clockwise direction to the joining node’s key.
For example, it will be assumed that node 4 comprising the
AS apparatus 112 shown in FIG. 1 is closest in the clockwise
direction to a joining node. Thus, node 4 is designated as a
“JOIN ANNOUNCER?” for the joining node.

The join announcer is responsible for announcing node
arrivals and incrementing the overlay size counter. It should
be noted that the JOIN ANNOUNCER may be different for
different joining nodes. In one implementation, the processor
202 makes the determination as to whether a joining node is
detected by receiving communications from the joining node
indicating it wishes to join the overlay network. If a joining
node is detected, the method proceeds to block 506. If a
joining node is not detected, the method proceeds to block
508.

At block 506, a message is sent to increment the overlay
size counter. The overlay size counter is maintained in the
distributed hash table. The overlay size counter is incre-
mented when a JOIN ANNOUNCER sends a message to be
stored at a data key obtained by hashing a well known string,
such as “OVERLAY-SIZE” to represent a unique previously

10

15

20

25

30

35

40

45

50

55

60

65

10

agreed upon counter variable. JOIN ANNOUNCERS send
messages to the key of this overlay size counter defining an
increment. Based on these messages, the overlay size counter
is incremented on the node storing the counter, i.e. the node
whose node key is closest to the counter key e.g. the hash of
the string “OVERLAY-SIZE”. In one implementation, the
processor 202 controls the transceiver 208 to transmit the
message to increment the overlay size counter.

At block 508, a determination is made as to whether a
leaving node is detected. In one implementation, any node
leaving the overlay gracefully sends a LEAVE message to its
neighbors in the numeric keyspace. A node whose node key is
closest in the counter-clockwise direction to the leave node’s
key is designated as the “LEAVE ANNOUNCER” for the
leaving node. For example, it will be assumed that node 4
comprising the AS apparatus 112 shown in FIG. 1 is closest in
the counter-clockwise direction to a leaving node. Thus, node
4 is designated as the LEAVE ANNOUNCER and is respon-
sible for decrementing the overlay size counter. In one imple-
mentation, the processor 202 makes the determination as to
whether a leaving node is detected by receiving communica-
tions from the leaving node indicating it wishes to leave the
overlay network. If a leaving node is detected, the method
proceeds to block 510. If a leaving node is not detected, the
method proceeds to block 512.

At block 510, a message is sent to decrement the overlay
size counter. The overlay size counter is maintained in the
distributed hash table. The overlay size counter is decre-
mented when a LEAVE ANNOUNCER sends a message to
be stored at a data key obtained by hashing a well known
string, such as “OVERLAY-SIZE” to represent a unique pre-
viously agreed upon counter variable. LEAVE ANNOUNC-
ERS send messages to the key of this overlay size counter
defining a decrement. Based on these messages, the overlay
size counter is decremented on the node storing the counter,
i.e. the node whose node key is closest to the counter key e.g.
the hash of the string “OVERLAY-SIZE”. In one implemen-
tation, the processor 202 controls the transceiver 208 to trans-
mit the message to decrement the overlay size counter.

At block 512, a determination is made as to whether a
leaving node can be inferred. Since nodes always join the
overlay network gracefully but may not leave the overlay
network gracefullyy, LEAVE ANNOUNCERs operate to
determine by inference when a node leaves the overlay. In one
implementation, the LEAVE ANNOUNCER updates the
overlay size counter when it infers that a node has left the
overlay. For example, the LEAVE ANNOUNCER for any
particular node needs to maintain the connection to that par-
ticular node to maintain the routing integrity of the ring. The
LEAVE ANNOUNCER can infer the leave of that particular
node due to a connection failure or other indication, and
subsequently update the overlay size counter. For example, it
will be assumed that node 4 comprising the AS apparatus 112
shown in FIG. 1 maintains a connection to a particular node to
maintain the routing integrity of the ring. In one implemen-
tation, the transceiver 208 detects a connection failure asso-
ciated with the particular node. Thus, node 4 is designated as
the LEAVE ANNOUNCER, and the processor 202 infers that
the particular node has left the overlay and operates to update
the overlay size counter even though a non-graceful leave has
occurred.

In one implementation, the processor 202 makes the deter-
mination as to whether to infer that a node has left the overlay
by detecting a connection failure or by receiving third party
communications indicating that the node has left the overlay
network. A third party communication may originate from
another node in the overlay network. If a leaving node is

US 9,240,927 B2

11

inferred, the method proceeds to block 514. If a leaving node
is not inferred, the method proceeds to block 516.

At block 514, a message is sent to decrement the overlay
size counter. The overlay size counter is maintained in the
distributed hash table. The overlay size counter is decre-
mented when a LEAVE ANNOUNCER sends a message to
be stored at a data key obtained by hashing a well known
string, such as “OVERLAY-SIZE” to represent a unique pre-
viously agreed upon counter variable. LEAVE ANNOUNC-
ERS send messages to the key of this overlay size counter
defining a decrement. Based on these messages, the overlay
size counter is decremented on the node storing the counter,
i.e. the node whose node key is closest to the counter key e.g.
the hash of the string “OVERLAY-SIZE”. In one implemen-
tation, the processor 202 controls the transceiver 208 to trans-
mit the message to decrement the overlay size counter.

At block 516, an overly network size counter is queried to
determine a current network size. Nodes can learn about the
network size by querying the same counter key by hashing the
well known string such as “OVERLAY-SIZE” to retrieve the
current value of the overlay size counter, which is the current
estimate of the overlay network size.

It should be noted that the above operations can be per-
formed at any node comprising the AS apparatus 200. Thus,
the operations are performed in a distributed manner in that
the overlay size counter may be incremented or decremented
by any node acting as a JOIN ANNOUNCER or a LEAVE
ANNOUNCER. Therefore, implementations of the AS sys-
tem operate to infer a node leave so that an overlay size
counter can be accurately updated in the case of ungraceful
leaves. It should also be noted that the method 500 is just one
implementation and that the operations of the method 500
may be rearranged or otherwise modified within the scope of
the various implementations. Thus, other implementations
are possible.

Size Determination—Method Two

A second method of size determination does not require
any specific messages to be sent out denoting joins and leaves
as in the method 500 above, nor is a well known agreed upon
counter to be maintained in the distributed hash table. The
second method utilizes an estimation technique that com-
prises two refinements that can be applied for additional
precision.

FIG. 6 shows a second method 600 for determining overlay
network size in accordance with the AS system. In the method
600, S denotes the sum of segment lengths (length of numeric
1D space) managed by any set of k nodes. Then an estimate E
of'the overlay size, i.e. the number of nodes in the overlay, can
be determined from k/S.

For clarity, the method 600 is described below with refer-
ence to the AS apparatus 200 shown in FIG. 2. In one imple-
mentation, the processor 202 executes one or more sets of
codes to control the AS apparatus 200 to perform the func-
tions described below. It will be assumed that the AS appara-
tus 200 is located at a node in an overlay network and that the
AS apparatus 200 performs the functions below to determine
the size of the overlay network.

At block 602, a set of nodes is identified in an overlay
network. The set may include some or all of the nodes in the
overlay network. For example, the nodes may comprise fin-
gers, neighbors or nodes that are in communication with the
node that comprises the AS apparatus. In one implementa-
tion, the processor 202 operates to identify the nodes that are
part of the set.

At block 604, segment lengths associated with the set of
nodes are obtained. In one implementation, the set of nodes
are queried to obtain their associated segment lengths. The

10

15

20

25

30

35

40

45

50

55

60

12

segment length is the part of the ID space between a given
node and its clockwise successor. As the segment length
decreases, there are a larger number of nodes in the network.

Since it may not be practical to sample all nodes in the
overlay network to retrieve their associated segment lengths,
in one implementation, the node comprising the AS apparatus
asks the nodes it already maintains routing relationships with
for their segment lengths. For example, the AS apparatus
could query each of the nodes in the set for the segment
lengths they manage. In another implementation, segment
length information is piggybacked on top of normal messages
between the node comprising the AS apparatus and its respec-
tive fingers or neighbors. Thus, the processor 202 controls the
transceiver 208 to obtain some or all of the segment informa-
tion from the set of nodes by piggybacking the information on
top of normal communications.

At block 606, a size of the overlay network is determined
based on the number of nodes in the set divided by the sum of
their segment lengths. For example, assuming that the length
of'the ID space is partitioned to be between 0 and 1. If there is
only one node in the overlay network, then E=1/1=1, which is
the correct estimate in this case. Consider two nodes and that
they partition the ID space such that the first node owns 0.3
and the second node owns 0.7. Then E=2/(0.3+0.7)=2. In one
implementation, the processor 202 operates to determine the
estimated size of the overlay network by dividing the total
number of nodes in the set by the sum of their associated
segment lengths.

Therefore, the method 600 operates to determine the size of
an overlay network based on an identified set of nodes and
their associated segment lengths. It should be noted that the
method 600 is just one implementation and that the opera-
tions of the method 600 may be rearranged or otherwise
modified within the scope of the various implementations.
Thus, other implementations are possible.

Refinements to Method Two

FIG. 7 shows a first refinement method 700 for determining
overlay network size in accordance with the AS system. For
example, in the method 700 operates to determine a more
accurate and/or robust overlay size estimate by averaging
estimates from one or more nodes. For clarity, the method 700
is described below with reference to the AS apparatus 200
shown in FIG. 2. In one implementation, the processor 202
executes one or more sets of codes to control the AS apparatus
200 to perform the functions described below. It will be
assumed that the AS apparatus 200 is located at a node in an
overlay network and that the AS apparatus 200 performs the
functions below to determine the size of the overlay network.

At block 702, a size estimate is determined at a first node.
In one implementation, the size estimate is determined by the
method 600. For example, the AS apparatus 200 operates at a
first node to perform the method 600 to determine a size
estimate of an overlay network.

Atblock 704, size estimates from other nodes are obtained.
For example, the first node comprising the AS apparatus
operates to obtain size estimates from other nodes. In one
implementation, the size estimates are obtained from fingers,
neighbors or other nodes that are in communication with the
first node. For example, the processor 202 operates to control
the transceiver 208 to obtain the size estimates from the other
nodes by querying the other nodes for their respective size
estimates.

At block 706, the overlay size is determined based on the
obtained size estimates. In one implementation, the first node
can further refine its size estimate by taking the average of all
the overlay size estimates it learns from its fingers, neighbors
or other nodes. Thus, the final size estimate E=(E0+E1+

US 9,240,927 B2

13

E2+ . . . +En)/n; where E1 to En are the size estimates
obtained from n other nodes and EO0 is the first node’s size
estimate. In one implementation, the processor 202 operates
to average the size estimates to obtain a more accurate aver-
aged size estimate.

Therefore, the method 700 operates to refine the first
method 600 by averaging size estimates from one or more
nodes to obtain a more accurate averaged size estimate. It
should be noted that the method 700 is just one implementa-
tion and that the operations of the method 700 may be rear-
ranged or otherwise modified within the scope of the various
implementations. Thus, other implementations are possible.

FIG. 8 shows a second refinement method 800 for deter-
mining overlay network size in accordance with the AS sys-
tem. For example, the method 800 operates to determine a
more accurate and/or robust overlay size estimate by averag-
ing estimates from any node in the overlay network. For
clarity, the method 800 is described below with reference to
the AS apparatus 200 shown in FIG. 2. In one implementa-
tion, the processor 202 executes one or more sets of codes to
control the AS apparatus 200 to perform the functions
described below. It will be assumed that the AS apparatus 200
is located at a first node in an overlay network and that the AS
apparatus 200 performs the functions below to determine the
size of the overlay network.

At block 802, a size estimate is determined at a first node.
In one implementation, the size estimate is determined by the
method 600. For example, the AS apparatus 200 operates at
the first node to perform the method 600 to determine a size
estimate of an overlay network.

Atblock 804, size estimates from other nodes are obtained.
For example, using the above method 700, it is possible that
the sampling of size estimation from other nodes is not uni-
form in the ID space. To combat this, size estimation infor-
mation is piggybacked on any packet exchange with any
node. This provides a more robust view of the size estimates
of the network because the number of nodes from which
individual size estimates are obtained is increased. Rather
than obtaining these estimates from only the neighbors of a
node, this refinement makes it possible to get this information
from any node that routes packets through a particular node or
conducts transactions apart from routing with the particular
node. Thus, the first node can obtain size estimates from
fingers, neighbors, and any other node that interact with the
first node. In one implementation, the processor 202 operates
to control the transceiver 208 to obtain the size estimates that
are piggybacked on any packet exchange with the first node.

At block 806, the overlay size is determined based on the
obtained size estimates. In one implementation, the first node
can further refine its size estimate by taking the average of all
the overlay size estimates it learns from its fingers, neighbors,
orany other node that is in communication with the first node.
Thus, the final size estimate E=(E0+E1+E2+ . . . +En)/n;
where E1 to En are the size estimates obtained from n other
nodes and E0 is the first node’s size estimate. In one imple-
mentation, the processor 202 operates to average the size
estimates to obtain a more accurate size estimate.

Therefore, the method 800 operates to refine the first
method 600 by providing for size estimates obtained piggy-
backed on any packet transmission to provide a more robust
average. It should be noted that the method 800 is just one
implementation and that the operations of the method 800
may be rearranged or otherwise modified within the scope of
the various implementations. Thus, other implementations
are possible.

FIG. 9 shows an exemplary AS apparatus 900 constructed
in accordance with the AS system. For example, the AS

25

30

35

40

45

50

55

60

65

14

apparatus 900 is suitable for use as the AS apparatus 200
shown in FIG. 2. In an aspect, the AS apparatus 900 is imple-
mented by at least one integrated circuit comprising one or
more modules configured to provide aspects of an AS system
as described herein. For example, in one implementation,
each module comprises hardware and/or hardware executing
software.

The AS apparatus 900 comprises a first module comprising
means (902) for inferring that a first node is leaving the
overlay network, which in an aspect comprises the processor
202. The AS apparatus 900 also comprises a second module
comprising means (904) for transmitting a decrement mes-
sage to decrement a size counter value, which in an aspect
comprises the transceiver 208.

FIG. 10 shows an exemplary AS apparatus 1000 con-
structed in accordance with the AS system. For example, the
AS apparatus 1000 is suitable for use as the AS apparatus 200
shown in FIG. 2. In an aspect, the AS apparatus 1000 is
implemented by at least one integrated circuit comprising one
or more modules configured to provide aspects of an AS
system as described herein. For example, in one implemen-
tation, each module comprises hardware and/or hardware
executing software.

The AS apparatus 1000 comprises a first module compris-
ing means (1002) for identifying a set of nodes associated
with a first node of an overlay network, which in an aspect
comprises the processor 202. The AS apparatus 1000 also
comprises a second module comprising means (1004) for
obtaining a segment length associated with each node of the
set of nodes, which in an aspect comprises the transceiver
208. The AS apparatus 1000 also comprises a third module
comprising means (1006) for determining a size of the over-
lay network by dividing the total number of the nodes in the
set of nodes by the sum of the segment lengths, which in an
aspect comprises the processor 202.

FIG. 11 shows an exemplary AS apparatus 1100 con-
structed in accordance with the AS system. For example, the
AS apparatus 1100 is suitable for use as the AS apparatus 200
shown in FIG. 2. In an aspect, the AS apparatus 1100 is
implemented by at least one integrated circuit comprising one
or more modules configured to provide aspects of an AS
system as described herein. For example, in one implemen-
tation, each module comprises hardware and/or hardware
executing software.

The AS apparatus 1100 comprises a first module compris-
ing means (1102) for identifying a set of nodes associated
with a first node of an overlay network, which in an aspect
comprises the processor 202. The AS apparatus 1100 also
comprises a second module comprising means (1104) for
obtaining a size estimate associated with the first node and
with each node of the set of nodes, which in an aspect com-
prises the transceiver 208. The AS apparatus 1100 also com-
prises a third module comprising means (1106) for determin-
ing the size of the overlay network by averaging the size
estimates, which in an aspect comprises the processor 202.

The various illustrative logics, logical blocks, modules,
and circuits described in connection with the aspects dis-
closed herein may be implemented or performed with a gen-
eral purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but, in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as

US 9,240,927 B2

15

a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

The steps of amethod or algorithm described in connection
with the aspects disclosed herein may be embodied directly in
hardware, in a software module executed by a processor, or in
a combination of the two. A software module may reside in
RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, a hard disk, a remov-
able disk, a CD-ROM, or any other form of storage medium
known in the art. An exemplary storage medium is coupled to
the processor, such that the processor can read information
from, and write information to, the storage medium. In the
alternative, the storage medium may be integral to the pro-
cessor. The processor and the storage medium may reside in
an ASIC. The ASIC may reside in a wireless communication
device. In the alternative, the processor and the storage
medium may reside as discrete components in a wireless
communication device.

The description of the disclosed aspects is provided to
enable any person skilled in the art to make or use the present
invention. Various modifications to these aspects may be
readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other aspects,
e.g., in an instant messaging service or any general wireless
data communication applications, without departing from the
spirit or scope of the invention. Thus, the present invention is
notintended to be limited to the aspects shown herein but is to
be accorded the widest scope consistent with the principles
and novel features disclosed herein. The word “exemplary” is
used exclusively herein to mean “serving as an example,
instance, or illustration.” Any aspect described herein as
“exemplary” is not necessarily to be construed as preferred or
advantageous over other aspects.

Accordingly, while aspects of an adaptive scheduling sys-
tem have been illustrated and described herein, it will be
appreciated that various changes can be made to the aspects
without departing from their spirit or essential characteristics.
Therefore, the disclosures and descriptions herein are
intended to be illustrative, but not limiting, of the scope of the
invention, which is set forth in the following claims.

What is claimed is:

1. A method for determining a size of a peer-to-peer over-
lay network, the method comprising:

inferring, by a processor, that a first node is leaving the

overlay network; and

transmitting a decrement message to be stored at a data key

associated with a size counter to decrement a size
counter value, wherein the data key is obtained by hash-
ing at least one string to represent a variable of the size
counter maintained in a hash table of the peer-to-peer
overlay network.

2. The method of claim 1, wherein said inferring comprises
determining that communication with the first node has
failed.

3. The method of claim 1, wherein said inferring comprises
receiving an indication from a third party that the first node is
leaving the overlay network.

4. The method of claim 1, further comprising:

determining that a second node is joining the overlay net-

work; and

transmitting an increment message to increment the size

counter value.

5. The method of claim 1, further comprising:

determining that a third node is leaving the overlay net-

work; and

5

10

15

20

25

30

35

40

45

50

55

60

65

16

transmitting the decrement message to decrement the size

counter value.

6. The method of claim 1, further comprising querying the
size counter value to determine the size of the overlay net-
work.

7. The method of claim 6, wherein the at least one string
comprises a known string, and wherein said querying the size
counter value comprises hashing the known string to retrieve
the size counter value.

8. The method of claim 1, wherein transmitting the decre-
ment message further comprises sending to a node storing the
size counter in the peer-to-peer overlay network based on a
relationship between an identifier of the node and the data key
of'the size counter, the relationship being defined by the hash
table of the peer-to-peer overlay network.

9. The method of claim 1, wherein transmitting the decre-
ment message further comprises transmitting by a LEAVE
ANNOUNCER node designated in the peer-to-peer overlay
network based on a relationship between a node key of the
first node leaving the overlay network and a node key of the
LEAVE ANNOUNCER node.

10. An apparatus for determining a size of a peer-to-peer
overlay network, the apparatus comprising:

memory having instructions stored thereon;

aprocessor configured to execute the instructions stored on

the memory to infer that a first node is leaving the over-
lay network and to generate a decrement message to be
stored at a datakey associated with a size counter located
in the peer-to-peer overlay network to decrement a size
counter value, wherein the data key is obtained by hash-
ing at least one string to represent a variable of the size
counter maintained in a hash table of the peer-to-peer
overlay network; and

a transmitter coupled to the processor and configured to

transmit the decrement message to decrement the size
counter value.

11. The apparatus of claim 10, wherein said processor is
configured to infer by determining that communication with
the first node has failed.

12. The apparatus of claim 10, wherein said processor is
configured to infer by receiving an indication from a third
party that the first node is leaving the overlay network.

13. The apparatus of claim 10, wherein:

said processor is configured to determine that a second

node is joining the overlay network; and

said transmitter is configured to transmit an increment

message to increment the size counter value.

14. The apparatus of claim 10, wherein:

said processor is configured to determine that a third node

is leaving the overlay network; and

said transmitter is configured to transmit the decrement

message to decrement the size counter value.

15. The apparatus of claim 10, wherein said processor is
configured to query the size counter value to determine the
size of the overlay network.

16. The apparatus of claim 15, wherein the at least one
string comprises a known string, and wherein said processor
is configured to query the size counter value by hashing the
known string to retrieve the size counter value.

17.A

non-transitory computer-readable medium for determin-

ing a size of a peer-to-peer overlay network, the com-
puter-readable medium embodying codes executable by
a processor to:

infer that a first node is leaving the overlay network; and

transmit a decrement message to be stored at a data key

associated with a size counter to decrement a size

US 9,240,927 B2

17

counter value, wherein the data key is obtained by hash-
ing at least one string to represent a variable of the size
counter maintained in a hash table of the peer-to-peer
overlay network.

18. The computer-readable medium of claim 17, wherein
said codes are configured to cause the processor to infer by
determining that communication with the first node has
failed.

19. The computer-readable medium of claim 17, wherein
said codes are configured to cause the processor to infer by
receiving an indication from a third party that the first node is
leaving the overlay network.

20. The computer-readable medium of claim 17, wherein
said codes are configured to cause the processor to:

determine that a second node is joining the overlay net-

work; and

transmit an increment message to increment the size

counter value.

10

15

18

21. The computer-readable medium of claim 17, wherein
said codes are configured to cause the processor to:

determine that a third node is leaving the overlay network;
and

transmit the decrement message to decrement the size
counter value.

22. The computer-readable medium of claim 17, wherein
said codes are configured to cause the processor to query the
size counter value to determine the size of the overlay net-
work.

23. The computer-readable medium of claim 22, wherein
the at least one string comprises a known string, and wherein
said codes are configured to cause the processor to query the
size counter value by hashing the known string to retrieve the
size counter value.

